экологические факторы. лимитирующие факторы. бочка либиха. взаимодействие факторов. пдк. экологические группы организмов. среды жизни. водная среда жизни. наземно-воздушная среда жизни. почва как среда жизни. организм как среда обитания. жизненные формы.2 обобщающий урок по аутэкологии динамика популяций. структура популяции. устойчивость популяций. экосистемы глоссарий.
Cлово "экология" в последее время употребляется столь часто, что далеко не всегда можно с уверенностью сказать, что же имелось в виду. Дело доходит до того, что на дихлофосе и креслах из натуральной кожи (последнее кажется особенно циничным) пишут "ЭКОЛОГИЧЕСКИ ЧИСТЫЙ" (!). Экология души, экологический ("зеленый") PR... А вузовский преподаватель всерьез предлагал в качестве темы для реферата "Экологию никеля".
"Экология" стала модным словечком. С одной стороны, нельзя отрицать объективность такой "моды": назревший экологический кризис делает актуальным все, связанное с экологией и взаимоотношениями человека и природы. С другой стороны, слово "затирается", не редко приходится слышать, что экологи - это не серьезные ученые. Многие не понимают разницы между экологией и охраной природы, полагая, что экология - это про чистый воздух и промышленные выбросы.
Так что же такое экология? Наверно, чтобы ответить на этот вопрос, нам нужно вспомнить немного истории этой весьма молодой науки.
Итак, экология зарождалась, как раздел биологии, изучающий взаимоотношения организмов со средой их обитания. Первые экологические исследования, пожалуй, стоит отнести к работам отца зоологии Аристотеля. "Папочка" описал более 500 видов животных, указав в том числе и на характер их мест обитания - а это уже сфера экологии.
Сам термин "экология" был предложен в 1866 году Геккелем (до этого предлагались другие варианты - "эпирриология", "биономия" - но они не прижились).
Термин "экология", как известно, происходит от греческих корней "ойкос" - "обиталище" и "логос" - "наука". То есть это наука о взаимоотношениях организмов со средой обитания (а не наука о доме, как пишут некоторые "остряки").
Современное определение экологии звучит следующим образом:
Экология - наука о взаимоотношениях организмов между собой и с окружающей их неорганической средой; о связях в надорганизменных системах, о структуре и функционировании этих систем.
(в литературе, несомненно, можно встретить множество определений, то заужающих, то до неясности расширяющих сферу экологии как науки; данное определение охватывает, прежде всего, область классической биоэкологии)
Если же говорить проще, то экология изучает отношения организмов со средой их обитания, между которыми возникает множество разнообразных связей. Организмы же благодаря этим связям существуют в природе не как хаотичные скопления, а образуют определенные сообщества - надорганизменные системы (популяции, биоценозы, экосистемы - о них речь пойдет в последующих уроках), также являющиеся предметом экологии. Так как все живое организовано в экосистемы (вся биосфера в целом - это тоже экосистема высокого уровня), то человек также оказывается включенным в многочисленные экологические взаимосвязи. Наши сельскохозяйственные поля также представляют собой своеобразные экосистемы.
Итак, экология изучает взаимосвязи:
- между организмами (включают пищевые и непищевые взаимосвязи);
- между организмами и средой их обитания;
- взаимосвязи внутри экосистем.
Соответственно, структура классической биоэкологии включает аутэкологию (экологию отдельных организмов), демэкологию (экологию популяций и видов), синэкологию (экологию сообществ организмов).
Как известно, в настоящее время науки претерпевают как бы два взаимно противоположных процесса. С одной стороны, происходит их дифференциация - науки распадаются на множество специализированных направлений, а с другой стороны, - интеграция - многие научные исследования проводятся на стыке наук, на стыке различных направлений возникают новые науки. Эти процессы не обошли стороной и экологию. Итак, определим уже названные разделы биоэкологии:
- аутэкология - изучает взаимоотношения отдельной особи (представителей вида) с окружающей ее (их) средой; определяет пределы устойчивости и предпочтения вида по отношению к различным экологическим факторам;
- демэкология - изучает взаимоотношения популяций с окружающей их средой, изучает демографию и ряд других характеристик популяций в свете их отношений с окружающей средой;
- синэкология - исследует биотические сообщества и их взаимоотношения со средой: формирование сообществ, их энергетику, структуру, развитие и т.д.
На стыке экология и других научных дисциплин (медицины, педагогики, юриспрунденции, химии, технологии, агрономии и так далее) рождаются новые научные направления. В широком смысле слова экология выходит за рамки чисто биологической отрасли знаний.
В экологии выделяют экологию различных систематических групп (экология грибов, экология растений, экология млекопитающий и т.д.), сред жизни (суши, почвы, моря и т.п.), эволюционную экологию (связь эволюции видов и сопутсвующих экологических условий), ряд прикладных направлений (медицинская, с/х, эколо-экономические науки) и многие другие направления - нет смысла описывать все.
Особо следует отметить такой раздел как социальная экология - то есть экология человеческого сообщества, изучающая взаимоотношение социума и Природы.
После того как мы дали определение экологии, наверное, будет полезным развести экологию и некоторые другие науки и понятия, которые часто смешиваются, и все это создает невообразимую путаницу.
К экологии иногда неверно относят ряд дисциплин. Так, природопользование и охрана природы не являются разделами экологии. Другое дело, что в последнее время стало ясно, что нельзя организовывать природопользование и охрану природу, не применяя экологических методов и не используя экологическое знание. Только знание о взаимосвязи природных объектов, об устойчивости природных систем может определить возможные механизмы взаимодействия с ними. Этим и объясняется справедливый всеобщий интерес к экологии как науке о взаимосвязях живых организмов и окружающей их среды.
Наше знакомство с экологией мы начинаем, пожалуй, с одного из самых разработанных и изученных разделов - аутэкологии (см. Урок #1). Как вы помните из первого урока, внимание аутэкологии концентрируется на взаимодействии особей или групп особей с условиями окружающей их среды. Поэтому ключевым понятием аутэкологии является экологический фактор, то есть фактор окружающей среды, воздействующий на организм.
Никакие природоохранные мероприятия не возможны без изучения оптимума действия того или иного фактора на данный биологический вид. В самом деле, как охранять тот или иной вид, если не знать, какие условия жизни он предпочитает. Даже "охрана" такого вида как человек разумный тебует знания санитарно-гигиенических норм, которые есть ни что иное, как оптимум различных экологических факторов применительно к человеку.
Влияние окружающей среды на организм и называется экологическим фактором. Точное научное определение звучит так:
ЭКОЛОГИЧЕСКИЙ ФАКТОР - любое условие среды, на которое живое реагирует приспособительными реакциями.
Экологический фактор - это любой элемент среды, оказывающий прямое или косвенное влияние на живые организмы хотя бы на протяжении одной из фаз их развития.
По своей природе экологические факторы делят, по крайней мере, на три группы:
- абиотические факторы - влияния неживой природы;
- биотические факторы - влияния живой природы.
- антропогенные факторы - влияния, вызванные разумной и неразумной деятельностью человека ("антропос" - человек).
Человек видоизменяет живую и неживую природу, и берет на себя в известном смысле и геохимическую роль (например, высвобождая замурованный в виде угля и нефти на многие миллионы лет углерод и выпуская его в воздух углекислым газом). Поэтому антропогенные факторы по размаху и глобальности своего воздействия приближаются к геологическим силам.
Не редко экологические факторы подвергают и более детальной классификации, когда надо указать на какую-то конкретную группу факторов. Например, различают климатические (относящиеся к климату), эдафические (почвенные) факторы среды.
В качестве хрестоматийного примера опосредованного действия экологических факторов приводят так называемые птичьи базары, представляющие собой огромные скопления птиц. Высокая плотность птиц объясняется целой цепочкой причинно-следственных связей. Птичий помет попадает в воду, органические вещества в воде минерализуются бактериями, повышенная концентрация минеральных веществ приводит к повышению численности водорослей, а вслед за ними - и зоопланктона. Низшими ракообразными, входящими в зоопланктон, питаются рыбы, а рыбами - птицы, населяющие птичий базар. Цепочка замыкается. Птичий помет выступает в качестве экологического фактора, опосредованно повышающего численность колонии птиц.
Как же сопоставлять действие столь разных по природе факторов? Не смотря на огромное множество факторов, из самого определения экологического фактора как элемента среды, оказывающего влияние на организм, следует нечто общее. А именно: действие экологических факторов всегда выражается в изменении жизнедеятельности организмов, а в конечном итоге, - приводит к изменению численности популяции. Это и позволяет сравнивать действие различных экологических факторов.
Стоит ли говорить, что действие фактора на особь определяется не природой фактора, а его дозой . В свете сказанного выше, да и простого жизненного опыта, становится очевидным, что эффект определяет именно доза фактора. Действительно, что такое фактор "температура"? Это в достаточной степени абстракция, а вот если сказать, что температура -40 по Цельсию - тут уже не до абстракций, поскорее бы закутаться во все теплое! С другой стороны, +50 градусов нам покажутся не многим лучше.
Таким образом, фактор воздействует на организм определенной дозой, и среди этих доз можно выделить минимальные, максимальные и оптимальные дозы, а также те значения, при которых жизнь особи прекращается (их называют летальными, или смертельными).
Воздействие различных доз на популяцию вцелом весьма наглядно описывается графически:
По оси ординат откладывается численность популяции в зависимости от дозы того или иного фактора (ось абсцисс). Выделяют оптимальные дозы фактора и дозы действия фактора, при которых происходит угнетение жизнедеятельности данного организма. На графике это соответствует 5 зонам:
- зона оптимума
- справа и слева от нее зоны пессимума (от границы зоны оптимума до max или min)
- летальные зоны (находящиеся за пределами max и min), в которых численность популяции равна 0.
Диапазон значений фактора, за границами которого нормальная жизнедеятельности особей становится невозможной, называется пределами выносливости.
На следующем уроке мы рассмотрим, как различаются организмы по отношению к различным экологическим факторам. Иными словами, речь на следующем уроке пойдет об экологических группах организмов, а также о бочке Либиха и о том, как связано все это с определением ПДК.
На прошлом уроке мы с вами рассмотрели существующие многообразие экологических факторов, а также обратили внимание на то общее, что и позволяет относить эти факторы к экологическим. Как мы отмечали, основной особенностью экологического фактора является его воздействие на жизнедеятельность организмов и возможность выделить оптимальные, пессимальные и летальные дозы воздействия экологического фактора.
На какие экологические факторы из всего их многообразия прежде всего обращает внимание исследователь? Не редко перед исследователем стоит задача выявить те экологические факторы, которые угнетают жизнедеятельность представителей данной популяции, ограничивают рост и развитие. Например, необходимо выяснить причины снижения урожая или причины вымирания естественной популяции.
При всем многообразии экологических факторов и сложностях, возникающих при попытке оценить их совместное (комплексное) воздействие, важно, что составляющие естественный комплекс факторы имеют неодинаковую значимость. Еще в 19 веке Либих (Liebig, 1840), изучая влияние различных микроэлементов на рост растений, установил: рост растений ограничивается элементом, концентрация которого лежит в минимуме. Фактор, находящийся в недостатке, был назван лимитирующим. Образно это положение помогает представить так называемая "бочка Либиха".
Представьте себе бочку, в которой деревянные рейки по бокам разной высоты, как это показано на рисунке. Понятно, какой бы высоты ни были остальные рейки, но налить воды в бочку вы сможете ровно столько, какова длина самой короткой рейки (в данном случае - 4 плашка).
Остается только "подменить" некоторые термины: высота налитой воды пусть будет какой-либо биологической или экологической функцией (например, урожайностью), а высота реек будет указывать на степень отклонения дозы того или иного фактора от оптимума.
В настоящее время закон минимума Либиха трактуется более широко. Лимитирующим фактором может быть фактор, находящийся не только в недостатке, но и в избытке.
Экологический фактор играет роль ЛИМИТИРУЮЩЕГО ФАКТОРА, если данный фактор находится ниже критического уровня или превосходит максимально выносимый уровень.
Лимитирующий фактор обуславливает ареал распространения вида или (при менее суровых условиях) сказывается на общем уровне обмена веществ. Например, содержание фосфатов в морской воде является лимитирующим фактором, определяющим развитие планктона и в целом продуктивность сообществ.
Понятие "лимитирующий фактор" применимо не только к различным элементам, но и ко всем экологическим факторам. Не редко в качестве лимитирующего фактора выступают конкурентные отношения.
У каждого организма в отношении различных экологических факторов существуют пределы выносливости. В зависимости от того, насколько широки или узки эти пределы, различают эврибионтные и стенобионтные организмы. Эврибионты способны выносить широкую амплитуду интенсивности различных экологических факторов. Скажем, ареал обитания лисицы - от лесотундры до степей. Стенобионты, напротив, переносят лишь очень узкие колебания интенсивности экологического фактора. Например, практически все растения влажных тропических лесов - стенобионты.
Не редко указывают, какой именно фактор имеется в виду. Так, можно говорить об эвритермных (переносящих большие колебания температуры) организмах (многие насекомые) и стенотермных (для растений тропических лесов колебания температуры в пределах +5... +8 градусов С может быть губительными); эври/стеногалинных (переносящих/непреносящих колебания солености воды); эври/стенобатных (живущих в широких/узких пределах глубины водоема) и так далее.
Возникновение в процессе биологической эволюции стенобионтных видов можно рассматривать как форму специализации, при которой большая эффективность достигается в ущерб адаптивности.
При независимом действии экологических факторов достаточно оперировать понятием "лимитирующий фактор", чтобы определить совместное воздействие комплекса экологических факторов на данный организм. Однако в реальных условиях экологические факторы могут усиливать или ослаблять действие друг друга. Например, мороз в Кировской области переносится легче, что в С.-Петербурге, так как в последнем выше влажность.
Учет взаимодействия экологических факторов - важная научная проблема. Можно выделить три основные вида взаимодействия факторов:
- аддитивное - взаимодействие факторов представляет собой простую алгебраическую сумму эффектов каждого из факторов при независимом действии;
- синергетическое - совместное действие факторов усиливает эффект (то есть эффект при их совместном действии больше простой суммы эффектов каждого фактора при независимом действии);
- антогонистическое - совместное действие факторов ослабляет эффект (то есть эффект при их совместном действии меньше простой суммы эффектов каждого фактора).
Почему так важно знать о взаимодействии экологических факторов? В основе теоретического обоснования величины предельно допустимых концентраций (ПДК) загрязнителей или предельно допустимых уровней (ПДУ) воздействия загрязнящих агентов (например, шума, радиации) лежит закон лимитирующего фактора. ПДК устанавливается экспериментально на уровне, при котором в организме еще не происходят патологические изменения. При этом существуют свои трудности (например, чаще всего приходится экстраполировать на человека данные, полученные на животных). Однако речь сейчас не о них.
Не редко приходится слышать, как природоохранные органы радостно рапортуют о том, что уровень большинства загрязнителей в атмосфере города находится в пределах ПДК. А органы госсанэпиднадзора в это же время констатируют повышенный уровень респираторных заболеваний у детей. Объяснение может быть таким. Не секрет, что многие атмосферные загрязнители обладают сходным эффектом: раздражают слизистые оболочки верхних дыхательных путей, правоцируют респираторные заболевания и т.д. И совместное действие этих загрязнителей дает аддитивный (или синергетический) эффект.
Поэтому в идеале при разработке норм ПДК и при оценке существующей экологической ситуации должно учитоваться взаимодействие факторов. К сожалению, практически это бывает очень сложно сделать: трудно спланировать такой эксперимент, трудно оценить взаимодействие, плюс ужесточение ПДК имеет отрицательные экономические эффекты.
Как мы уже выяснили на предыдущих уроках, пределы выносливости организмов по отношению к различным экологичным факторам сильно различаются. Набор соответствующих адаптаций и широта пределов выносливости определяют распространение данного вида, возможность его обитания в данной пиродной зоне. По отношению к различным экологическим факторам выделяют экологические группы организмов. В основе экологической классификации организмов положено отношение организмов к данному экологическому фактору. Таким образом, существует множество классификаций - по отношению к свету, к теплу, к влажности и т.п.
Сегодня мы рассмотрим экологические группы организмов по отношению к свету, к теплу, а также особенности этих экологических факторов.
Однако вначале пара слов об адапатциях (то есть приспособительных реакциях) вообще. Учение об адаптациях - одна из наиболее разработанных частей экологии. Здесь лежит сфера пересечения таких наук как экология, эволюционное учение (так как процесс эволюции, по сути, представляет собой процесс появления эффективных адапатций), физиология (физиологические механизмы адаптаций) и проч.
Различают три основных пути адаптации к неблагоприятным условиям среды:
- активный - активная перестройка функций организма (например, возникновение теплокровности, а по-научному - гомойотермности);
- пассивный - пассивное подчинение функций организма изменениям внешней среды (например, холоднокровные, или пойкилотермные, животные);
- избегание - избегание неблагоприятных условий (таксисы у растений, миграция у животных, выработка циклов развития у животных и растений).
СВЕТ.
Практически единственным источником энергии для всех живых организмов является энергия солнца. Напрямую утилизировать солнечную энергию может только одна группа организмов - зеленые растения (об этом разговор пойдет в последующих уроках) и фотосинтезирующие организмы. Речь, разумеется, об уникальном явлении - фотосинтезе. Все остальные организмы, по сути, поглощают энергию солнца, преобразованную зелеными растениями в энергию химических связей.
Солнечная радиация, с физической точки зрения, представляет собой электромагнитное излучение с широким диапазоном длин волн. Экологические и биологические эффекты волн различной длины различны.
Ионизирующее излучение (длина волн меньше 150 нм). Естественный, а также техногенный радиоактивный фон. Биологическое действие осуществляется, прежде всего, на субклеточном уровне. Возможно повреждающее действие на генетический аппарат половых клеток (мутагенный эффект), соматических клеток (канцерогенный эффект).
Ультрафиолетовые лучи (150-400 нм). Наиболее коротковолновая (200-280 нм) часть спектра практически полностью поглощается озоновым экраном. УФ-лучи с длиной волны 280-320 нм обладают канцерогенным действием, однако механизм этого действия до конца неясен. Эти лучи также активируют некоторые микроорганизмы. Часть спектра от 300 нм (именно эти лучи, в основном, достигают поверхности Земли) оказывает на организмы, главным образом, химическое действие; активируют процессы клеточного синтеза; под воздействием этих лучей в организме синтезируется витамин D3, регулирующий обмен кальция и фосфора и нормальный рост организмов. Многие млекопитающие, выводящие детенышей в норах, регулярно выносят их на освещенные солнцем места вблизи норы (например, лисицы, барсуки). Основная роль этого поведения, как считают, нормализация синтеза витамина D, регуляция продукции меланина (черного пигмента). В то же время избыток УФ-лучей играет отрицательную роль.
Гигантское значение играет видимый свет . Помимо химического (в верхней, сине-фиолетовой, части спектра) и теплового (в нижней, красно-желтой, части спектра) действия, видимый свет имеет сигнальное значение. Ориентация многих животных в пространстве, сигнализация между животными (благодаря зрению), синхронизация ритмов жизни растений с сезонной динамикой (благодаря изменению продолжительности светого дня) невозможны без видимого света.
Здесь нужно сделать краткое отступление. Среди множества классификаций экологических факторов, существует интересная классификация, различающая витальные (энергетические) и сигнальные экологические факторы. Первые оказывают непосредственное воздействие на жизнедеятельность организмов, меняют их энергетическое состояние. Примеры таких факторов: температура, хищничество и другие. Факторы второй группы (сигнальные) несут информацию об изменении характеристик среды, вызывают изменение в поведении, жизненной стратегии организмов и т.д. Примеры таких факторов: феромоны, продолжительность светового дня. При этом СВЕТ является примером экологического фактора, обладающего как витальным, так и сигнальным действием. С одной стороны, он служит главным источником энергии для фотосинтеза растений, а с другой -- он играет важную роль в осуществлении биологических ритмов разной продолжительности.
По отношению к свету выделяют следующие экологические группы растений:
- гелиофиты (светолюбивые);
- сциофиты (тенелюбивые);
- теневыносливые (факультативные гелиофиты).
Гелиофиты . Световые растения. Обитатели открытых мест обитания: лугов, степей, верхних ярусов лесов, ранневесенние растения, многие культурные растения.
Характеризуются следующими признаками:
- мелкие размеры листьев; встречается сезонный диморфизм: весной лестья мелкие, летом - крупнее;
- листья располагаются под большим углом, иногда почти вертикально;
- листовая пластинка блестящая или густо опушенная;
- образуют разряженные насаждения.
Сциофиты . Не выносят сильного света. Места обитания: нижние затемненные ярусы; обитатели глубоких слоев водоемов. Прежде всего, это растения, растущие под пологом леса (кислица, костынь, сныть).
Характеризуются следующими признаками:
- листья крупные, нежные;
- листья темно-зеленого цвета;
- листья подвижные;
- характерна так называемая листовая мозаика (то есть особое расположение листьев, при котором листья макимально не заслоняют друг друга).
Теневыносливые . Занимают промежуточное положение. Часто хорошо развиваются в условиях нормального освещения, но могут при этом переносить и затемнение. По своим признакам занимают промежуточное положение.
ТЕПЛО.
Температура, в отличие от света, является исключительно витальным (энергетическим) фактором. У растений и животных (особенно холоднокровных животных) повышение температуры тела вызывает ускорение всех биохимических и физиологических процессов. Так, при повышении температуры сокращается время, необходимое для прохождение отдельных стадий развития. Наример, для развития гусениц бабочки-капустницы от яйца до куколки при температуре 10 С требуется 100 суток, а при 26 С - только 10 суток.
Зависимость скорости развития от температуры описывается S-образной кривой:
Точка а, в которой кривая v=f(t) пересекает шкалу температур (то есть ось OX), называется порогом развития. При температуре ниже данной развитие не происходит.
Так называемая сумма активных температур, то есть сумма температур, которые необходимо набрать для завершения цикла развития, используется в сельском хозяйстве. Описывается сумма активных температур Stэфф так:
Stэфф = y*(t-a).
y - это время развития, t - температура, при которой происходит развитие. Stэфф - постоянная (конечно, в статистическом смысле - индивидуальные различия, безусловно, есть) величина для данного вида. Найденная закономерность (а математики, наверно, уже успели привести предыдущую зависимость к виду y=S/(t-a) ) находит практическое применение. Зная длительность развития при различных температурах, можно вычислить сумму активных температур. Обычно сумма активных температур для сельскохозяйственных растений уже известна; на основании ее значения и конкретных температур делается фенологический прогноз, определяется возможность акклиматизации данного вида, необходимость и длительность выращивания в закрытом грунте (теплицах).
Температура также воздействует и на течение других физиологических процессов (количество потребляемой пищи, поведение, плодовитость и так далее). Температурный режим, связанный с географической широтой и другими факторами, определяет границы распространения видов.
Пределы выносливости организмов. +70 ... + 90 oС выносят водоросли горячих источников. Некоторые бактерии способны развиваться в кратерах вулканов. Сухие семена переносят температуры, близкие к абсолютному нулю. Некоторые древесные растения могут переносить температуры -60 ... -70 oС. В полярных льдах есть виды водорослей, которые существуют в очень узких температурных пределах - около 0 oС.
Тепло для растений может выступать формообразующим фактором. Так, при недостатке тепла у высокогорных видов возникает форма "подушки", внутри которой создается более теплый микроклимат; у обитателей тундры возникают стелящиеся, или шпалерные, и карликовые формы.
По отношению к теплу выделяют следующие экологические группы:
- Эвритермные и стенотермные организмы (см. предыдущий урок)
- Термофилы и криофилы (теплолюбивые и холодолюбивые)
- По степени адаптации к условиям дефицита тепла различают нехолодостойкие (гибнут при температуре замерзания воды из-за инактивации ферментов), неморозостойкие (гибнут, если в клетках начинают образовываться кристаллики льда; поэтому основной адаптацией является накопление сахаров и других веществ при понижении температуры), морозостойкие (например, переохлажденное состояние холодноводных рыб поддерживается накоплением в жидкостях тела так называемых биологических антифризов - гликопротеидов, понижающих точку замерзания).
- По степени адаптации к повышенным температурам выделяют нежаростойкие виды (повреждаются при t=30... 40 oC); жаровынослиые (выносят +50... + 60 oС); жароустойчивые (это, преждевсего, термофильные бактерии, некоторые виды сине-зеленых ворослей).
Рассмотрение физиологических механизмов адаптации к повышенным и пониженным температурам не входит в задачи нашего курса. Однако, если будут вопросы - пишите, попробуем уделить этому вопросу какой-нибудь из спецвыпусков.
На сегодня все (выпуск и так получился очень объемным). Следующий урок будет посвящен рассмотрению сред жизни.
Ключевые понятия: среда - среда жизни - водная среда - наземно-воздушная среда - почвенная среда - организм как среда жизни
В предыдущих уроках мы часто говорили о "среде обитания", "среде жизни" и не давали этому понятию точного определения. Интуитивно мы понимали под "средой" все то, что окружает организм и так или иначе на него влияет. Влияния среды на организм - и есть экологические факторы, которые мы изучали на предыдущих уроках. Иными словами, среда жизни характеризуется определенным набором экологических факторов.
Общепризнанным определением среды является определение Николая Павловича Наумова:
СРЕДА - все, что окружает организмы, прямо или косвенно влияет на их состояние, развитие, выживание и размножение.
На Земле существует огромное разнообразие условий сред жизни, что обеспечивает разнообразие экологических ниш и их "заселение". Однако, не смотря это разнообразие, различают четыре качественно различные среды жизни, обладающие специфическим набором экологических факторов, а следовательно - требующих и специфического набора адаптаций. Вот эти среды жизни:
- наземно-водушная (суша);
- водная;
- почва;
- другие организмы.
Познакомимся с особенностями каждой из этих сред.
По мнению большинства авторов, изучающих возникновение жизни на Земле, эволюционно первичной средой жизни была именно водная среда. Этому положению мы находим не мало косвенных подтверждений. Прежде всего, большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, по крайней мере, без сохранения определенного содержания жидкости внутри организма. Внутренняя среда организма, в которой происходят основные физиологические процессы, очевидно, по-прежнему сохраняет черты той среды, в которой происходила эволюция первых организмов. Так, содержание солей в крови человека (поддерживаемое на относительно постоянном уровне) близко к таковому в океанической воде. Свойства водной океанической среды во многом определили химико-физическую эволюцию всех форм жизни.
Пожалуй, главной отличительной особенностью водной среды является ее относительная консервативность. Скажем, амплитуда сезонных или суточных колебаний температуры в водной среде намного меньше, чем в наземно-воздушной. Рельеф дна, различие условий на различных глубинах, наличие коралловых рифов и проч. создают разнообразие условий в водной среде.
Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления. Эволюция многих групп водных животных по этой причине шла в направлении формирования формы тела и типов движения, снижающих лобовое сопротивления, что приводит к снижению энергозатрат на плавание. Так, обтекаемая форма тела встречается у представителей различных групп организмов, обитающих в воде, - дельфинов (млекопитающих), костистых и хрящевых рыб.
Высокая плотность воды является также причиной того, что механические колебания (вибрации) хорошо распространяются в водной среде. Это имело важное значение в эволюции органов чувств, ориентации в пространстве и коммуникации между водными обитателями. Вчетверо большая, чем в воздухе, скорость звука в водной среде определяет более высокую частоту эхолокационных сигналов.
В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, которая характерна для наземных форм и связана с силами гравитации. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще.
Электропроводность открыла возможность эволюционного формирования электрических органов чувств, обороны и нападения.
Наземно-воздушная среда характеризуется огромным разнообразием условий существования, экологических ниш и заселяющих их организмов. Надо отметить, что организмы играют первостепенную роль в формировании условий наземно-воздушной среды жизни, и прежде всего - газового состава атмосферы. Практически весь кислород земной атмосферы имеет биогенное происхожение.
Основными особенностями наземно-воздушной среды является большая амплитуда изменения экологических факторов, неоднородность среды, действие сил земного тяготения, низкая плотность воздуха. Комплекс физико-географических и климатических факторов, свойственных определенной природной зоне, приводит к эволюционному становлению морфофизиологических адаптаций организмов к жизни в этих условиях, многообразию форм жизни.
Высокое содержание кислорода в атмосфере (около 21%) определяет возможность формирования высокого (энергетического) уровня обмена веществ.
Атмосферный воздух воздух отличается низкой и изменчивой влажностью. Это обстоятельство во многом лимитировало (ограничивало) возможности освоения наземно-воздушной среды, а также направляло эволюцию водно-солевого обмена и структуры органов дыхания.
Почва является результатом деятельности живых организмов. Заселявшие наземно-воздушную среду организмы приводили к возникнвению почвы как уникальной среды обитания. Почва представляет собой сложную систему, включающую твердую фазу (минеральные частицы), жидкую фазу (почвенная влага) и газообразную фазу. Соотношение этих трех фаз и определяет особенности почвы как среды жизни.
Важной особенностью почвы является также наличие определенного количества органического вещества. Оно образуется в результате отмирания организмов и входит в состав их экскретов (выделений).
Условия почвенной среды обитания определяют такие свойства почвы как ее аэрация (то есть насыщенность воздухом), влажность (присутствие влаги), теплоемкость и термический режим (суточный, сезоный, разногодичный ход температур). Термический режим, по сравнению с наземно-воздушной средой, более консервативный, особенно на большой глубине. В целом, почва отличается довольно устойчивыми условиями жизни.
Вертикальные различия характерны и для других свойств почвы, например, проникновение света, естетсвенно, зависит от глубины.
Многие авторы отмечают промежуточность положения почвенной среды жизни между водной и наземно-воздушной средами. В почве возможно обитание организмов, обладающих как водным, так и воздушным типом дыхания. Вертикальный градиент проникновения света в почве еще более выражен, чем в воде. Микроорганизмы встречаются по всей толще почвы, а растения (в первую очередь, корневые системы) связаны с наружными горизонтами.
Для почвенных организмов характерны специфические органы и типы движения (роющие конечности у млекопитающих; способность к изменению толщины тела; наличие специализированных головных капсул у некоторых видов); формы тела (округлая, вольковатая, червеобразная); прочные и гибкие покровы; редукция глаз и исчезновение пигментов. Среди почвенных обитателей широко развита сапрофагия - поедание трупов других животных, гниющих остатков и т.д.
Живой организм может также служить средой обитания - для паразитов и симбионтов. Например, человеческий организм является средой обитания для огромного числа различных симбионтов (прежде всего, нормальной микрофлоры кишечника), а не редко - и паразитов (разнообразных плоских и круглых червей, простейших).
Организм как среда обитания характеризуется определенным постоянством (гомеостазом). В то же время некоторые виды паразитов вынуждены противостоять агрессивной среде организма (например, агрессивной среде желудочно-кишечного тракта) и иммунной системе орагинзма.
Организм, как правило, обеспечивает паразитов и симбионтов питательными веществами, находящимися в доступной форме и не требующими дальнейшего пищеварения и переработки. Поэтому у большинства паразитов наблюдается упрощение строения (редукция) органов пищеварения. Стратегия их выживания направлена на оставление как можно большего числа потомков, формирование защитных механизмов и приспособлений к рапространению.
Паразитизм и симбиотические взаимоотношения будут нами подробно рассмотрены на одном из уроков, посвященном видам взаимоотношений между организмами.
Знакомство с жизненными формами важно не только для понимания значения комплекса экологических факторов, действующих на данный вид. Ряд понятий из синэкологии (то есть экологии сообществ) не возможно объяснить без предварительного знакомства с жизненными формами. Именно поэтому я решил посвятить жизненным формам отдельный небольшой урок.
Как мы с вами уже видели, комплекс экологических факторов, составляющий специфику данного места обитания, требует от населяющих это место обитания организмов и комплекска специфических адаптаций. Не редко такой комплекс адаптаций выражается в формировании сходного облика и плана строения организмов, даже если они принадлежат к разным систематическим группам.
ЖИЗНЕННАЯ ФОРМА - внешний облик и биологические особенности, отражающие приспособленность организма к определенным условиям среды обитания.
Синонимами понятия "жизненная форма" (с некоторыми оговорками, в зависимости от того, позиции какого автора придерживаться) можно считать термины "биоморфа", "экоморфа" и даже "экобиоформа". Сегодня мы не будем касаться биологических и эволюционных аспектов жизненных форм, а лишь посмотрим на их экологический смысл.
Собственно, мы с вами уже говорили о жизненных формах в предыдущих уроках, хотя и не вводили этого понятия. Например, когда мы говорили о формообразующей роли тепла как экологического фактора, мы перечисляли некоторые жизненные формы - карликовые , стелящиеся, "подушка" и другие. Даже из этого примера видно, что возникновение жизненных форм указывает на сходные пути адаптации к некоторому ведущему экологическому фактору или комплексу факторов.
Основными жизненными формами растений можно считать травянистые и древесные формы. Деревья, кустарники и травы ведылял еще Теофраст. В основу выделения жизненных форм растений кладут пластичные признаки, такие как форма роста, ритм сезонного развития, степень защищенности от неблагоприятных условий наиболее уязвимых частей тела растения. Не редко это - ковергентные признаки (с точки зрения эволюционной теории), то есть они развиваются в сходных условиях у представителей разных систематических групп и поэтому не отражают систематического положения своих обладателей. Например, жизненная форма стеблевых суккулентов, то есть растений, запасающих воду в тканях стебля, представлена двумя систематическими группами - кактусами и молочаями.
Существует много различных классификаций жизненных форм растений. Одна из наиболее простых классификаций жизненных форм растений была разработана Раункиером. В ее основу как раз и положена степень защищенности от неблагоприятных условий наиболее уязвимых частей растения. А именно, речь идет о положении почки возобновления. Выделяют 5 основных типов жизненных форм растений:
- фанерофиты: почка возобновления находится высоко над землей (деревья, кустарники, эпифиты);
- хамефиты: почки возобновления находятся невысоко над поверхностью почвы (на 20-30 см) и, как правило, зимой защищены снежным покровом (кустарнички, полукустарники, полукустарнички, некоторые многолетние травы, мхи);
- гемикриптофиты: почка возобновления находится на уровне почвы(иногда чуть выше) и защищена чешуями, опавшими листьями и снежным покровом;
- криптофиты: почки возобновления закладываются на корневищах, клубнях, луковицах и находятся на некоторой глубине в почве (геофиты) или под водой (гидрофиты);
- терофиты: неблагоприятное время года переносят в виде семян (это все однолетние и двулетние растения).
Таким образом, классификация Раункиера отражает приспособленность растений к сезонным изменениям климата. Поэтому в местах обитания, где фактически сезоны отсутствуют, классификация не работает. Соотношение жизненных форм растений на некоторой территории в определенной степени является индикатором местного климата.
Нельзя не упомянуть и об очень подробной классификации Ивана Григорьевича Серебрякова. Он выделял типы, отделы, классы, подклассы, группы, подгруппы и секции жизненных форм. Даже нескольких выпусков, наверно, не хватит, чтобы ознакомиться со всей разработанной им системой жизненных форм растений. Это целая "экологическая систематика растений".
В основе системы Серебрякова лежит онтогенез, то есть индивидуальное развитие, побега в конкретных условиях существования. Так, в классификации Серебрякова выделяются типы Кустарники, Кустарнички, Деревья, Монокарпические травы (монокарпики цветут и плодоносят один раз в жизни), Поликарпические травы и так далее. Например, в типе Поликарпических трав выделяются стержнекорневые поликарпики, дерновые многолетники и так далее.
Какой-то единой классификации жизненных форм животных нет. Однако, как объективная необходимость, жизненные формы возникают и у животных:
- роющие млекопитающие (крот, слепыш);
- прыгуны (тушканчики, кенгуру);
- лазящие животные ( белка, бурундук, соболь).
и так далее.
Хочется отметить, что один и тот же вид растений в различных условиях может иметь разные жизненные формы. Например, дуб и ель в лесной зоне или лесном поясе гор представляют собой обычные высокоствольные деревья, в то время как на Крайнем Севере они образуют кустарниковые и стланиковые формы.
Итак, жизненные формы отражают сходные пути приспособления к среде обитания.
Хочется сказать пару слов об использовании жизненных форм в экологическом образовании (особенно школьном). Демонстрация, скажем, комнатных растений разных жизненных форм - травянистых, древесных, стеблевых и листовых суккулентов, шарообразных, стелящихся и так далее - на мой взгляд, поможет усвоить многие понятия аутэкологии. На примере жизненных форм и экологических групп можно показать как разнообразие условий обитания, так и приспособлений к ним. К слову, комнатные растения вообще являются довольно удобными объектами в школьном курсе экологии.
Сегодняшний урок является неким обобщением всего того, что мы уже успели узнать об аутэкологии и взаимоотношениях организмов со средой обитания.
Звучит банально, но самая главная и важная закономерность в системе "среда-организм" - это неразрывная связь и взаимное влияние среды и организма. Как организм испытывает воздействие среды (действие комплекса экологических факторов), так и среда претерпевает изменения в результате воздействия живых организмов. Мы уже обсуждали, что облик Земли был бы совсем иным, если бы на планете не было жизни (в атмосфере не было бы кислорода, не было бы такого явления как почва и так далее). Подробнее эти вопросы мы будем рассматривать на уроках по глобальной (биосферной) экологии.
Указанная выше основная закономерность системы "среда-организм" была сформулирована еще В. И. Вернадским и получила название закона единства организма и среды его обитания:
жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов.
Не смотря на некоторую сложность языка Вернадского, смысл этой закономерности очевиден: в совокупном единстве среды и населяющих ее организмов (в глобальном масштабе - в биосфере) происходит постоянный обмен веществом и информацией, что и делает возможным существование жизни.
Из этого следует простой эволюционно-экологический принцип: вид организмов может существовать до тех пор и постольку, поскольку окружающая его среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям. Мы неоднократно говорили о проявлении этой закономерности, когда указывали на комплекс специфических адаптаций к тем или иным условиям среды (см. два предыдущих урока).
Воздействие вида на среду является важной экологической закономерностью. Вернадский отмечал, что такое воздействие эволюционно возрастает. Эта закономерность была сформулирована в виде закона максимума биогенной энергии (энтропии) Вернадского-Бауэра:
Любая биологическая система, находясь в подвижном равновесии с окружающей ее природной средой и эволюционно развиваясь, увеличивает свое воздействие на среду. Давление на среду растет до тех пор, пока не будет строго ограничено внешними факторами: надсистемами или другими конкурентными системами.
В действии экологических факторов на организм мы отмечали как главную закономерность возможность выделения оптимальных и пессимальных (критических) доз действия фактора. Однако к такому понятию как "оптимум фактора" нельзя подходить с механистических позиций, в природе все намного сложнее. Это нашло выражение в законе неоднозначности действия фактора на организм: любой экологический фактор неодинаково влияет на функции организма; оптимум фактора для одних физиологических процессов может отличаться от такового для других процессов. Так, любой специалист по физиологии растений скажет, что температурный оптимум для фотосинтеза и дыхания во многих случаях различен.
То, что мы говорили на предыдущих урока о взаимодействии экологических факторов, необходимо дополнить представлением об относительной компенсации (взаимозаменяемости) факторов. Недостаток некоторых экологических факторов может быть компенсирован другим фактором. Например, некоторый недостаток света может быть компенсирован для растений обилием углекислого газа. Однако такая компенсация возможна лишь в определенных пределах. Сколько бы углекислого газа ни было, но в полной темноте фотосинтез все равно не пойдет.
Существование лимитирующих факторов, описанное Либихом, нашло свое отражение в законе ограничивающих факторов Блэкмана и законе толерантности Шелфорда. Факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют (ограничивают) возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных факторов. Главное отличие законов Блэкмана и Шелфорда от Либиховских правил состоит в том, что этими учеными было показано: не только недостаток (минимум) фактора, но и его избыток (максимум) могут затруднять (ограничивать) развитие организма.
И в заключении хочется указать на еще одну закономерность действия экологических факторов на организм, имеющую важное прикладное значение. Как мы отмечали в одном из предыдущих уроков, теоретическим основанием для расчета ПДК является представление о лимитирующих факторах. Важной проблемой является не только необходимость учета взаимодействия факторов, их синергетического (взаимно усиливающего) действия. Необходимо определиться с понятием порога вредного действия, то есть начиная с каких доз фактора можно говорить о его вредном воздействии на здоровье.
В этой связи необходимо иметь в виду следующие закономерности. Правило фазовых реакций ("польза-вред") гласит, что малые концентрации токсиканта действуют на организм в направлении усиления его функций (стимулирования). Это дало основание для утверждений о полезности некоторых факторов в малых дозах (например, радиации). Однако это довольно спорное утверждение. Так, Николай Федорович Реймерс указывает, что вывод биологических систем из состояния равновесия с помощью слабых доз токсикантов не может идти им на пользу. Например, этологи знают, что увеличение плодовитости может быть сигналом биологического неблагополучия. У физиологов есть понятие о "цене адаптации"; если рассматривать стимулирование функций организма малыми дозами токсикантов как адаптацию к токсическому воздействию, то необходимо учитывать и цену такой адаптации: изнашивание адаптационных механизмов, ускорение старения и так далее.
В то же время правило фазовых реакций находит свое применение в медицине, собственно, на стимулирующем действии различных веществ и агентов основаны многие медикаментозные методы лечения. Поэтому закон фазовых реакций следует учитывать и применять для лечения, когда иного более оптимального выхода нет.
Необходимо также иметь в виду, что правило фазовых реакций справедливо для многих, но не для всех ядовитых веществ. Например, в действии цианида, блокирующего дыхательные цепи и приводящего к практически мгновенной смерти, вряд ли такие фазы можно выделить. Особенно спорно благоприятное действие малых доз радиации, а соответственно, и вытекающие из его признания/непризнания пороговая и беспороговая концепции. Радиобиологи до сих пор бьются на смерть, отстаивая ту или иную концепцию.
Так, одни ученые утверждают о благоприятности воздействия малых доз радиации на те или иные функции (например, наблюдалось увеличение плодовитости мышей при облучении 0,1-1,5 Гр). Соответственно, эти ученые являются сторонниками пороговой концепции: можно выявить порог вредного действия радиации. Другие ученые занимают противоположную точку зрения и указывают на то, что любое, даже незначительное, дполнительное к фону облучение приводит к дополнительным мутациям и канцерогенезам. Из этого ими выводится беспороговая концепция: нельзя установить какой-то порог и любое дополнительное (к фону) облучение следует признавать вредным. Определенную сложность представляет и тот факт, что люди генетически разнокачественны, и те дозы, которые для подавляющего большинства могут оказаться допороговыми, для отдельных индивидуумов могут вызвать различные эффекты.
Реймерс пишет, что споры сторонников концепции пороговости и беспороговости бессмысленны, так как все зависит от начальных условий и индивидуальных реакций. Успокоительная статистика для пораженного болезнью и его близких мало утешительна. С этим трудно не согласиться, хотя трудно и отрицать наличие определенного (в том числе, политического) смысла в споре пороговой и беспороговой концепций. Подробнее мы поговорим об этой сложной социальной и биологической проблеме в одной из спецвыпусков по социальной экологии.
Ключевые понятия: популяция - давление среды - емкость среды - динамика численности популяции
Как мы уже отмечали, каждый вид на Земле занимает определенный ареал - в силу того, что каждый вид способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида (особенно, если речь идет об эврибионтном виде - см. определение эврибионтов в предыдущих уроках) могут существенно отличаться. Это (и не только это) приводит к тому, что на территории, занимаемой видом, возникают достаточно обособленные группы особей, которые отличаются друг от друга целым рядом признаков.
Эти группы особей в пределах одного вида получили название популяции.
ПОПУЛЯЦИЯ - элементарная группировка особей одного вида, занимающая определенную территорию и обладающая всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды.
Это - определение С.С. Шварца, не трудно заметить, что он определял популяцию с эвлоюционно-экологических позиций. В то же время есть не мало определений понятия "популяция" с точки зрения генетики, экологии. Нам будет удобнее использовать определение Николая Федеровича Реймерса:
ПОПУЛЯЦИЯ - это совокупность особей одного вида, имеющих общий генофонд и населяющих определенное пространство, с относительно однородными условиями обитания.
Динамика численность популяции и ее структура (возрастной, половой состав) являются ее важнейшими характеристиками. Знание типа роста популяции и ее структуры, как мы увидем ниже, имеет важное экологическое значение. Кроме того, динамика численности популяции является излюбленным объектом для создания разнообразных математических моделей.
Численность популяции обычно обозначают заглавной N. Отношение прироста N к единице времени dN/dt выражает мгновенную скорость изменения численности популяции, то есть изменение численности в момент времени t.
Не трудно догадаться, что прирост популяции будет зависеть от двух факторов - рождаемости и смертности. Разумеется, при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции:
r=b - d
Различают максимальную мгновенную скорость прироста популяции rmax и фактическую скорость увеличения популяции ra. При воображаемых идеальных условиях, когда рождаемость максимальна, а смертность минимальна, ra достигает наибольшей величины - rmax.
Если бы скорость прироста оставалась постоянной, то рост численности популяции происходил по экспоненте:
dN/dt=rN;
Nt=N0ert.
Здесь Nt - численность популяции в момент времени t, N0 - начальная численность численность популяции, r - скорость прироста (в расчете на одну особь), а e - основание натурального логарифма. Такая экспоненциальная зависимость изображена на рисунке ниже красной линией и носит название биотического потенциала, так как, как правило, она отражает лишь ту потенциальную численность, которую бы могла иметь популяция в случае отсутствия различных ограничивающих ее рост факторов.
Поэтому в естетсвенных условиях обычно наблюдается иная зависимость численность популяции от времени. Это зависимость описывается S-образной логистической кривой (она изображена на графике зеленой линией). По достижении какого-то предела график выходит на плато, численность стабилизируется и испытывает только сезонные и разногодичные флуктуации, связанные с изменением погодных условий, численности других популяций (являющихся хищниками или, наоборот, пищевыми ресурсами по отношению к данной популяции) и другими внешними факторами.
Что касается математического выражения этой зависимости, то она отличается от экспоненциальной наличием корректирующего фактора: (К-N)/K, где K - максимально возможная в данных условиях численность популяции. K называется также емкостью среды, а область на графике между кривой биотического потенциала и логистической кривой - давлением среды. Соответственно, уравнение для этой зависимости с учетом крректирующего фактора будет выглядеть так:
dN/dt=rN[(K-N)/K].
Наличие определенной емкости среды, ограничивающей рост популяции, является важной экологической закономерностью. Устойчивое существование всего биотического сообщества связано с существованием механизмов, регулирующих численность составляющих сообщество популяций. В экологии известно не мало примеров, когда нарушение этих механизмов (например, интродукция видов в экосистемы, где у них нет естественных врагов) приводило к плачевным последствиям.
Хочется особо сказать о человеческой популяции. Споры о существовании "пределов роста" и емкости среды применительно к человечеству не утихают до сих пор. Оптимисты уверяют, что человечество может увеличиваться в численности до бесконечности: вот изобретем, как получать еду из пыли путем перегруппировки атомов, расселимся по другим планетам. Пессимисты предсказывают скорый коллапс: как только численность человеческой популяции превысит критический уровень. В оценке этого "критического" уровня и скорости приближения к нему эксперты также расходятся.
О стратегиях выживания человечества мы будем говорить в одном из уроков по глобальной экологии. Однако сейчас хочется отметить, что, на мой, возможно субъективный, взгляд, упование на колонизацию других планет, новые технологии и прочее - позиция неконструктивная и во многом утопичная. В определении емкости среды для человечества необходимо исходить из существующих реалий и общеэкологических закономерностей, о которых мы будем говорить в последующих уроках.
Под демографической структурой популяции понимают прежде всего ее половой и возрастной состав. Кроме того, принято говорить о пространственной структуре популяции - то есть об особенностях размещения особей популяции в пространстве.
Знание структуры популяции позволяет исследователю сделать выводы о ее благополучии или неблагополучии. Например, если в популяции отсутствуют генеративные (то есть способные дать потомство) особи и при этом много старовозрастных (сенильных) особей, то можно сделать неблагоприятный прогноз. У такой популяции может не быть будущего. Структуру популяции желательно изучать в динамике: зная ее изменение в течение нескольких лет, можно намного более уверенно говорить о тех или иных тенденциях.
Возрастная структура популяции. Этот тип структуры связан с соотношением особей различных возврастов в популяции. Особи одного возраста принято объединять в когорты, то есть возрастные группы.
Возрастная структура популяций растений описана очень подробно. В ней выделяют (по Т.А. Роботнову) следующие возрасты (возрастные группы организмов):
- латентный период - состояние семени;
- прегенеративный период (включает состояния проростка, ювенильного растения, имматурного растения и виргинильного растения);
- генеративный период (обычно подразделяется на три подпериода - молодых, зрелых и старых генеративных особей);
- постгенеративный период (включает состояния субсенильного растения, сенильного растения и фазу отмирания).
Разумеется, при этом возникает проблема соотношения календарного и биологического возраста. Принадлежность к определенному возрастному состоянию определяется по степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков. Таким образом фиксируется, прежде всего, биологический возраст особи. Биологический возраст имеет для эколога большее значение, так как именно он определяет роль особи в популяционных процессах. В то же время, как правило, существует взаимосвязь между биологическим и календарным возрастом.
В популяциях животных также можно выделить различные возрастные стадии. Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии яйца, личинки, куколки, имаго (взрослого насекомого). У других животных (развивающихся без метаморфоза) также можно выделить различные возрастные состояния, хотя границы между ними могут быть и не настолько четкими.
Характер возрастной структуры (или как говорят, возрастного спектра) популяции зависит от типа так называемой кривой выживания, свойственной данной популяции. Кривая выживания отражает уровень смертности в различных возрастных группах. Так, если уровень смертности не зависит от возраста особей, то кривая выживания представляет собой снижающуюся линию (см. рисунок, тип I). То есть отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни. Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии.
У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение в следствие естественной (физиологический) смертности. Тип IIна рисунке. Близкий к этому типу характер кривой выживания свойственен человеку (хотя кривая выживания человека несколько более пологая и, таким образом, является чем-то средним между типами I и II). Этот тип носит названия типа дрозофиллы: именно его демонстрируют дрозофиллы в лабораторных условиях (не поедаемые хищниками).
Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие "критический" возраст, демонстрируют низкую смертность и доживают до больших возрастов. Тип носит название типа устрицы. Тип IIIна рисунке.
Изучение кривых выживания представляет большой интерес для эколога. Оно позволяет судить о том, в каком возрасте тот или иной вид наиболее уязвим. Если действие причин, способных изменить рождаемость или смертность, приходится на наиболее уязвимую стадию, то их влияние на последующее развитие популяции будет наибольшим. Эту закономерность необходимо учитывать при организации охоты или в борьбе с вредителями.
Половая структура популяции. О половой структуре популяции можно говорить, разумеется, только если речь идет о раздельнополом (бисексуальном) виде. Бисексуальность играет огромную роль в поддержании генетической разнокачественности особей популяции. Значение генетической разнокачественности для устойчивости популяции будет подробно раскрыто в следующем уроке. Сейчас же отметим, что половая структура, то есть соотношение полов, имеет прямое отношение к воспроизводству популяции и ее устойчивости.
Принято выделять первичное, вторичное и третичное соотношение полов в популяции. Первичное соотношение полов определяется генетическими механизмами - равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX - женского. В этом случае первичное соотношение полов 1:1, то есть равновероятно.
Вторичное соотношение полов - это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим X- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных - преимущественно, самки.
Третичное соотношение полов - это соотношение полов среди взрослых животных.
Пространственная структура популяции. Пространственная структура популяции отражает характер размещение особей в пространстве.
Выделяют три основных типа распределения особей в пространстве:
- единообразное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга), тип также носит название равномерного распределения;
- конгрегационное, или мозаичное (то есть "пятнистое", особи размещаются в обособленных скоплениях);
- случайное, или диффузное (особи распределены в пространстве случайным образом).
Если вы дружны со статистикой, то различие между этими типами пространственной структуры можно описать так. Возьмем некоторое число выборок, подсчитав число особей на равных площадях. Если дисперсия числа особей в выборках стремится к нулю - мы имеем дело с равномерным распределением. Если дисперсия близка к среднему арифметическому - это случайное распределение. Если же дисперсия на много больше среднего арифметического, то можно говорить о конгреационном размещении особей.
Равномерное распределение встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (как, например, у хищных рыб).
Случайное распределение можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремление к объединению в группы. Как хрестоматийный пример равномерного распределения, обычно приводят распределение жука Tribolium в муке.
Распределение группами встречается намного чаще. Оно связано с особенностями микросреды или с особенностями поведения животных.
Пространственная структура имеет важное экологическое значение. Прежде всего, определенный тип использования территории позволяет популяции эффективно использовать ресурсы среды и снизить внутривидовую конкуренцию. Эффективность использования среды и снижение конкуренции между представителями популяции позволяют ей укрепить свои позиции по отношению к другим видам, населяющим данную экосистему.
Другое важное значение пространственной структуры популяции состоит в том, что она обеспечивает взаимодействие особей внутри популяции. Без определенного уровня внутрипопуляционных контактов популяция не сможет выполнять как свои видовые функции (размножение, расселение), так и функции, связанные с участием в экосистеме (участие в круговоротах веществ, создание биологической продукции и так далее).
Понятие устойчивости можно назвать одним из основополагающих в экологии. Действительно, практический смысл всем биоэкологическим изысканиям придает лишь знание пределов устойчивости той или иной биологической системы к возможному воздействию со стороны человека. Каков допустимый уровень воздействия человека на природу, при котором она еще способна к самовосстановлению? Пожалуй, это один из важнейших вопросов, на который должен ответить эколог.
В то же время определенности с понятием "устойчивость" в экологической науке до сих пор нет. Существует множество подходов к тому, что же считать устойчивостью, и еще больше -- какие свойства природных объектов можно считать критериями устойчивости. Иными словами, какие изменения каких свойств той или иной биологической системы (организма, популяции, экосистемы) говорят о потери устойчивости?
К проблеме устойчивости мы еще вернемся в одном из ближайших уроков, посвященном устойчивости экосистем. Пока же хочется обозначить основные моменты. Чаще всего, под устойчивостью понимают способность системы адекватно реагировать на изменение внешних условий. Устойчивость популяции - это ее способность находится в состоянии динамического (то есть подвижного, изменяющегося) равновесия со средой: изменяются условия среды - адекватно изменяется и популяции. Условия возвращаются в начальное значение - популяция также восстанавливает свои свойства. Стабильность же предполагает способность сохранять свои свойства, не смотря на внешние изменения.
Одним из важнейших условий устойчивости (кстати, это ответ на одно из заданий, если кто-то его еще помнит) является внутреннее разнообразие. Хотя споры ученых о том, как соотносится структурное и функциональное разнообразие с устойчивостью системы, не утихают, несомненно, что чем система разнообразнее - тем она устойчивее. Скажем, чем разнообразнее по своим генетическим задаткам особи популяции, тем больше шансов, что при изменении условий в популяции найдутся особи, способные в этих условиях существовать.
Разнообразие - общее свойство, обеспечивающее устойчивость биологических систем. В то же время есть и специфические механизмы поддержания устойчивости. Применительно к популяции это, прежде всего, механизмы поддержания определенной плотности популяции.
Выделяют три типа зависимости численности популяции от ее плотности.
Первый тип (I) является, пожалуй, одним из самых распространенных. Как видно из рисунка, I тип характеризуется уменьшением роста популяции при увеличении ее плотности. Это обеспечивается различными механизмами. Прежде всего, это снижение рождаемости при увеличении плотности популяции. Такая зависимость рождаемости (плодовитости) от плотности популяции была отмечена, например, для многих видов птиц. Другим механизмом является увеличение смертности, снижение сопротивляемости организмов при повышенной плотности популяции. Даже в человеческой популяции большие скопления людей (толпа на базаре, давка в общественном транспорте) вызывают стресс - это "рудименты" оставшегося нам от предков механизма контроля плотности. Еще одним любопытным механизмом является изменение возраста наступления половой зрелости в зависимости от плотности популяции.
Второй тип (II) характеризуется постоянным темпом роста численности, который резко падает при достижении максимальной численности. Подобная картина была описана у леммингов. При достижении максимальной плотности они начинали массово мигрировать; достигнув моря, многие лемминги тонули.
Одним из важнейших факторов поддержания численности популяций является внутривидовая конкуренция. Она может проявляться в различных формах: от борьбы за места для гнездования до каннибализма.
Межвидовые отношения также играют важную роль. Отношения паразит-хозяин и хищник-жертва во многом зависят от плотности: распространение болезней происходит быстрее в популяциях с высокой плотностью, которая выступает эпидемиологическим фактором.
Наконец, третьим типом (III) является тип, характерный для популяций, в которых отмечается так называемый "эффект группы", то есть определенная оптимальная плотность популяции способствует лучшему выживанию, развитию, жизнедеятельности всех особей. В данном случае наиболее благоприятной является определенная оптимальная, а не минимальная плотность. В определенной степени эффект группы характерен для большинства групповых, а тем более социальных (то есть имеющих "социальную структуру" популяции, разделение ролей) животных. Скажем, для возобновления популяций разнополых животных, как минимум, необходима плотность, обеспечивающая достаточную вероятность встречи самца и самки.
Таким образом, оптимальная численность и плотность популяции поддерживается как благодаря внутрипопуляционным механизмам (увеличение/уменьшение рождаемости и смертности, изменение возраста наступления половой зрелости, внутривидовая конкуренция), так и благодаря междвидовым механизмам (взаимоотношения хищник-жертва и паразит-хозяин).
С регуляцией плотности, а особенно с уменьшением внутривидовой конкуренции, тесно связано поддержание популяцией определенной пространственной структуры. Мы уже отмечали в предыдущих уроках, что пространственная структура имеет большое значение для оптимального использования ресурсов и для уменьшения конкуренции внутри популяции за эти ресурсы.
Однако необходимо учесть, что устойчивость популяции не исчерпывается регуляцией плотности. Оптимальная плотность чрезвычайно важна для оптимального использования ресурсов (при увеличении плотности ресурсов может не хватить), однако это еще не гарантия устойчивой популяции. Как мы уже отмечали, устойчивость во многом связана с внутренним разнообразием. Поэтому очень важно поддержание генетической структуры популяции. Рассмотрение эволюционных и генетических механизмов поддержания генетической структуры, пожалуй, не входит в наши задачи, однако интересующимся можно посоветовать посмотреть закон Харди-Вайнберга.
Мы рассмотрели далеко не все механизмы, обеспечивающие стабильность популяций. Однако, на мой взгляд, мы уже можем сделать важный вывод о том, что эволюционно сохранялись те виды и популяции, которые могут поддерживать свою структуру в меняющихся условиях. При этом очевидно, что пределы устойчивости не бесконечны. Если уровень воздействия (например, со стороны человека - прямо, или косвенно через изменение среды обитания) превышает пределы устойчивости, популяции угрожает гибель.
В предыдущих уроках мы много говорили о том, что любой вид, любая популяция и даже отдельная особь живут не изолированно от среды своего обитания, а напротив, испытывают многочисленные взаимные влияния. Живые организмы влияют друг на друга (вспомнить хотя бы влияние плотности популяции на темп ее роста), на среду своего обитания (например, почва, которую мы веделяли как отдельную среду жизни, является продуктом деятельности живых организмов), а также испытывают действие внешних факторов - как в эволюционном, так и в индивидуальном плане.
Поэтому нет ничего удивительного в том, что сообщества взаимодействующих живых организмов представляют собой не случайный набор видов, а вполне определенную систему, достаточно устойчивую, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов. Такие системы принято называть биотическими сообществами, или биоценозами (что в переводе с латыни и означает "биологическое сообщество"), а системы, включающие живых организмов и среду их обитания, - экосистемами. Есть еще термин "биогеоценоз", также означающий систему биологического сообщества и среды его обитания, но в различии понятий "экосистема" и "биогеоценоз" мы разберемся в одном из последующих уроков.
Таким образом, экосистема - это совокупность взаимодействующих видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей их средой таким образом, что такое сообщество может сохраняться и функционировать необозримо длительное время. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз), сообщества животных (зооценоз), сообщества микроорганизмов (микробоценоз). Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу. Биосфера также обладает устойчивостью и другими свойствами экосистемы.
Каждый вид в биотическом сообществе играет определенную экологическую роль. Ученые к настоящему времени не описали и десятой части всех населяющих планету видов, особенно плохо изучены насекомые и микроорганизмы. В то же время предполагают, что микроорганизмы могут играть ведущую роль в поддержании устойчивости всей биосферы. В связи с малой изученностью того, какова роль каждого отдельного вида, нельзя наверняка утверждать, что вымирание одного-единственного вида не будет иметь серьезных последствий для устойчивости экосистемы или всей биосферы. С этим связана известная "экологическая поговорка" Б. Коммонера: "Природа знает лучше". Иными словами, изменять что-то в природных сообществах и при этом не знать точно, как "работает" природа, - кажется не самым разумным подходом.
Вернемся к взаимодействию видов, составляющих биоценоз. Эти виды связаны многочисленными связями, поэтому изменение численности или исчезновение одного вида может необратимо сказаться на других видах. Между видами отмечают как пищевые (связанные с использованием в пищу одних видов другими), так и непищевые связи. Непищевые взаимоотношения между видами чрезвычайно многообразны: одни виды являются средой обитания для других; ряд видов помогают другим перемещаться в пространстве или распространять семена. Иногда продолжение рода невозможно без участия других видов: например, для размножения многих цветковых растений необходимо участие опыляющих насекомых. Многообразие коакций (то есть различных взаимоотношений между видами) мы рассмотрим в следующем уроке.
Существование экосистемы возможно благодаря постоянному притоку энергии извне - таким источником энергии, как правило, является солнце, хотя не для всех экосистем это справедливо. Устойчивость экосистемы обеспечивается прямыми и обратными связями между ее компонентами, внутренним круговоротом веществ и участием в глобальных круговоротах.
Знание о функционировании экосистем, механизмах их устойчивости чрезвычайно важно для понимания роли человека в биосфере, планирования природоохранной деятельности и определения оптимальных нагрузок на естетсвенные экосистемы. Такие важные понятия как биологическое разнообразие, устойчивость биосферы теснейшим образом связаны с пониманием того, как устроены экосистемы и почему они устойчивы. Всеми этими вопросами мы и займемся в последующих уроках, посвященных изучению синэкологии - то есть экологии биотических сообществ.
УСТОЙЧИВОСТЬ СИСТЕМЫ
способность оставаться относительно неизменной в течение определенного (достаточно длительного) периода времени, вопреки внешним и внутренним возмущениям.
ЭКОЛОГИЧЕСКАЯ СТАБИЛЬНОСТЬ
это способность природной системы (популяции, сообщества или экосистемы) сохранять свою структуру и функции при воздействии внешних факторов.
УСТОЙЧИВОСТЬ ЭКОСИСТЕМЫ
ее способность к пропорциональному по величине отклику на величину воздействия.
ДЕГРАДАЦИЯ СРЕДЫ
общее ухудшение природной среды жизни человека. Деградация природной системы - ее угнетение, упрощение структуры.
НАДОРГАНИЗМЕННАЯ СИСТЕМА
саморазвивающаяся и саморегулирующаяся материально-энергетические совокупность, образованная естественными структурами. Существует как относительно устойчивое целое за счет взаимодействия, распределения и перераспределения веществ, энергии, информации и обеспечивает преобладание внутренних связей над внешними.
ФАКТОР АБИОТИЧЕСКИЙ
условие или совокупность условий неорганического мира; экологический фактор неживой природы.
ФАКТОР АНТРОПОГЕННЫЙ
экологический фактор, обязанный своим происхождением деятельности человека.
ПЛАНКТОН
совокупность организмов, обитающих в толще воды и неспособных активно сопротивляться переносу течениями, то есть "парящих" в воде.
БАЗАР ПТИЧИЙ
колониальное поселение птиц, связанных с водной средой (кайр, чаек).
МИКРОЭЛЕМЕНТЫ
химические элементы, необходимые организмам в ничтожных количествах, но определяющие успешность их развития. М. в виде микроудобрений используют для повышения урожайности растений.
ФАКТОР ЛИМИТРИУЮЩИЙ
фактор, ставящий рамки (определяющий) для течения какого-то процесса или для существования организма (вида, сообщества).
АРЕАЛ
область распространения любой систематической группы организмов (вида, рода, семейства) или определенного типа сообщества организмов (например, ареал лишайниковых сосняков).
ОБМЕН ВЕЩЕСТВ
(применительно к организму) последовательное потребление, превращение, использование, накопление и потеря веществ и энергии в живых организмах. Жизнь возможна только благодаря обмену веществ.
ЭВРИБИОНТ
организм, проживающий в различных условиях среды
СТЕНОБИОНТ
организм, требующий строго определенных условий существования.
КСЕНОБИОТИК
чужеродное для организма химическое вещество, естественно не входящее в биотический круговорот. Как правило, ксенобиотик - антропогенного происхождения.
АДАПТАЦИЯ
комплекс морфофизиологических и поведенческих особенностей особи, популяции или вида, обеспечивающий успех в конкуренци с другими видами (популяциями, особями) и устойчивость к воздействию экологических факторов.
ФОТОСИНТЕЗ
превращение зелеными растениями и фотосинтезирующими микроорганизмами (т.н. бактериальный Ф.) энергии Солнца в энергию химических связей органических соединений.
ТАКСИС
направленное перемещение организмов, отдельных клеток и даже их органелл под влиянием односторонне действующего фактора (например, ориентация хлоропластов в зависимости от направления освещения - фототаксис).
МУТАЦИЯ
изменение наследственных свойств организма
КАНЦЕРОГЕН
вещество или физический агент, приводящий к возникновению злокачественных (раковых) новообразований.
СУММА АКТИВНЫХ ТЕМПЕРАТУР
сумма температур (превышающих порог развития), необходимых для завершения жизненного цикла.
ПОРОГ РАЗВИТИЯ
температура (или значение другого фактора), ниже которой развитие данного вида не происходит.
ЦИКЛ РАЗВИТИЯ, ЦИКЛ ЖИЗНЕННЫЙ
совокупность всех фаз индвидуального роста и развития особи, в результате которого она достигает характерных величин, приобретает характерные признаки.
ФЕРОМОН(ы)
биологически активные вещества, вырабатываемые животными; оказывают влияние на поведение, а иногда рост и развитие особоей того же вида. К Ф. относят вещества, привлекающие особей другого пола (аттрактанты), вещества тревоги и т.д. Ф. - разновидность химической сигнализации (коммуникации) между организмами.
НИША ЭКОЛОГИЧЕСКАЯ
положение вида в природе, включающее не только место вида в пространстве, но и его функциональную роль в природном сообществе, положение относительно абиотических условий существования, место отдельных фаз жизненного цикла представителей вида во времени (например, ранневесенние виды растений занимают вполне самостоятельную экологическую нишу).
ЭВОЛЮЦИЯ
необратимое историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, образованием и вымиранием видов, преобразованием экосистем и биосферы в целом.
ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА
отличающася относительным постоянством состава и свойств среда, обеспечивающая протекание жизненных процессов в организме. Для человека внутренней средой организма является система крови, лимфы и тканевой жидкости.
ЭХОЛОКАЦИЯ, ЛОКАЦИЯ
определение положения в пространстве объекта по испускаемым или отражаемым сигналам (в случае эхолокации - восприятие звуковых сигналов). Способностью к эхолокации обладают морские свинки, дельфины, летучие мыши. Радиолокация и электролокация - восприятие отраженных радиосигналов и сигналов электрического поля. Способностью к этому виду локации обладают некоторые рыбы - нильский длиннорыл, гимарх.
ПОЧВА
особое природное образование, возникшее в результате преобразования поверхностных слоев литосферы под воздействием живых организмов, воды, воздуха, климатических факторов.
ЭКСКРЕТЫ
конечные продукты обмена веществ, выделяемые организмом наружу.
ПАРАЗИТИЗМ
форма межвидовых отношений, состоящая в том, что один организм (паразит) живет за счет особи другого вида (хозяина) и тесно связан с ним в жизненном цикле. Паразиты питаются соками тела, тканями или переваренной пищей своих хозяев, многократно без умерщвления (в противоположность хищничеству).
СИМБИОЗ
форма межвидовых отношений, состоящая в совместном существовании организмов разных систематических групп (симбионтов), взаимовыгодное, нередко обязательное сожительство особей двух и более видов. Классическим (хотя и не бесспорным) примером симбиоза является сожительство водорослей, гриба и микроорганизмов в составе тела лишайников.
АУТЭКОЛОГИЯ
раздел экологии, изучающий взаимоотношения отдельной особи (популяции, вида) с окружающей ее (их) средой.
ДЕМЭКОЛОГИЯ
раздел экологии, изучающий взаимоотношения популяции с окружающей ее средой.
СИНЭКОЛОГИЯ
раздел экологии, изучающий биотические сообщества и их взаимоотношения со средой обитания (формирование сообществ, их структура, развитие и так далее).
КОНВЕРГЕНЦИЯ
появление в результате естественного отбора (в ходе эволюции) сходных анатомо-морфологических, физиологических, поведенческих черт у относительно далеких по происхождению групп организмов.
СУККУЛЕНТ
растение с сочными мясистыми листьями (агава, алоэ) или стеблями (кактусы). Легко переносит высокие температуры, но не выносит обезвоживания.
ГАБИТУС
внешний облик животного или растения
МОНОКАРПИК
растение, плодоносящее один раз в жизни
ПОЛИКАРПИК
растение, плодоносящее более одного раза.
ДЫХАТЕЛЬНАЯ ЦЕПЬ
последовательность ферментативных реакций, в ходе которых происходит окисление органических веществ с высвобождением энергии.
Грей (Гр)
единица поглощенной дозы, то есть дозы, поглощенной тем или иным объектом.
1 Гр = 100 рад.
1 рад. = 0,1 Дж/кг
ЭТОЛОГИЯ
наука о поведении животных
ПОРОГ ВОЗДЕЙСТВИЯ
наименьшее воздействие, ощущаемое организмом
ТОЛЕРАНТНОСТЬ
способность организмов относительно безболезненно выносить отклонения факторов среды от оптимальных для них
ВИД
качественно обособленная форма живого - основная единица эволюционного процесса.
ПОПУЛЯЦИЯ
совокупность особей одного вида, имеющих общий генофод и населяющих определенное пространство с отноительно однородными условиями обитания.
АРЕАЛ
область распространения любой систематической группы организмов (вида, рода, семейства).
ДИНАМИКА ПОПУЛЯЦИИ
изменение численности, полового и возрастного состава популяции, определяемое внутрипопуляционными процессами и взаимодействием популяций разных видов.
ЭМИГРАЦИЯ
любое перемещение организма из места, считающегося обычным, в другое место.
ИММИГРАЦИЯ
вселение в какую-либо местность организмов, ранее здесь не обитавших.
ПОТЕНЦИАЛ БИОТИЧЕСКИЙ
потенциальная способность живых организмов увеличивать численность в геометрической прогрессии.
ЕМКОСТЬ СРЕДЫ
размер способности природного или природно-антропогенного окружения (среды) обеспечивать нормальную жизнедеятельность определенному числу организмов и их сообществ без заметного нарушения самого окружения.
ИНТРОДУКЦИЯ
преднамеренный или случайный перенос особей какого-либо вида живого за пределы его ареала.
КОГОРТА
группа особей популяции одного возраста
РАЗВИТИЕ С МЕТАМОРФОЗОМ, метаморфоз
тип индивидуального развития особей, при котором развитие происходит с превращением; при этом одной из стадий развития является личинка, отличающаяся от взрослых форм строением и образом жизни.
ИМАГО
взрослое насекомое
ОРГАНИЗМ
любое живое существо, целостная система, реальный носитель жизни, характеризующийся всеми ее свойствами; происходит от одного зачатка (зиготы, споры, семени и т.п.); индивидуально подвержен факторам эволюции и экологическим факторам.
ПОПУЛЯЦИЯ
совокупность особей одного вида, имеющих общий генофонд и населяющих определенное пространство.
ЭКОСИСТЕМА
единый природный комплекс, образованный живыми организмами и средой их обитания.
ПЛОТНОСТЬ ПОПУЛЯЦИИ
среднее число особей популяции (вида) на единицу площади или объема пространства.
СТРЕСС
неспецифическая (общая) реакция напряжения живого организма на любое сильное воздействие, оказываемое на него.
КОНКУРЕНЦИЯ
соперничество, любые антогонистические отношения, определяемые стремлением лучше или скорее достигнуть какой-либо цели по сравнению с другими членами сообщества. Конкуренция возникает за пространство, пищу, свет, самкуу и т.д. Конкуренция - одно из проявлений борьбы за существование.
СООБЩЕСТВО ОРГАНИЗМОВ
совокупность взаимосвязанных и взаимозависимых видов в пределах некорого естественно ограниченного объема жизненного пространства.
БИОСФЕРА
активная оболочка Земли, в которой совокупная деятельность живых организмов проявляется как геохимическая сила планетарного масштаба.